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A fast accurate multi-stage numerical method, back-averaging, 1s developed, analyzed, and
optimzed The techmique 1s used to solve an alternating dimensional numerncal simulation of
fusion plasma transport based on nonlinear resistive magnetohydrodynamics (MHD)
equations The geometry of the model 1s a complicated time-dependent two-dimensional con-
figuration of flux contours analogous to a doublet Numerical convergence rate comparisons
of the optimized back-averaging method with various other iterative techniques for solving the
numerical problem show that optimized back-averaging 1s the fastest method of all those
considered Moreover, to accomplish convergence 1n a practical length of time for extremely
peaked profiles and complicated time varying configurations, back-averaging 1s essential
Further, with a miminum of additional computation, optimized back-averaging yields extreme
accuracy 1988 Academic Press Inc

INTRODUCTION

This 1s a theoretical and numerical study which develops a practical algorithm for
solving nonlinear resistive MHD equations used in transport theory of fusion
plasmas. The method is applicable to systems of equations other than the MHD
system treated here.

The derivation of the system we treat, Grad and Hogan [1], 1s based on the
observation that a resistive, heat conducting MHD fluid evolves on several different
time scales. Considerable advantage can be gained if physical phenomena which
evolve on a fast time scale can be held fixed while those evolving on a slow time
scale vary. These considerations were first applied in Grad and Hogan [ 1] diffusion
theory. There, it was recognized that the time derivative in the momentum equation
serves only to facilitate the distribution of plasma pressure over the flux contours of
the magnetic field. We omit this time derivative from the governing system of
equations and lose plasma waves but obtain a vastly simpler set of equations which
are interpreted as follows: the magnetic field evolves on a time scale governed by
the resistivity and the plasma pressure is instantaneously adjusted over the flux
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contours which control the magnetic field. Thus, pressure balance occurs on a time
scale which is not included 1n the final system of equations.

More recent approaches to the calculation of transport in toroidal plasma fusion
devices include variations of the original Grad-Hogan theory. In particular, the
papers of Pao[2] and Jardin [3] are notable since, for certain systems, they
provide a straightforward route toward numerical implementation. However, for
plasma systems which contain complex three-dimensional magnetic field topology,
Grad’s flux surface averaged technique of preparing the governing equations,
provides an optimal mix of physics and geometry. Here we use Grad’s flux surface
averaged equations and develop a fast, accurate iterative method for numerical
solution. A detailed treatment of the equations and the solution algorithm
(Alternating Dimension Algorithm) appears in [4-7].

The introduction of flux surface averaging leads to a novel generalised or “queer”
differential equation [8,9]. Numerical solutions of the flux surface averaged
equations have been carried out over the past decade by standard iteration
techniques. These techniques fail for the two-dimensional configurations, involving
complicated time varying topology including singularities, which we treat here. For
these, we establish and accelerate convergence by multi-stage iterative techniques,
in particular, back-averaging. The technique applies generally to nonlinear iterative
schemes for finding a fixed point.

In Sections 1, 2, and 3, we outline the Alternating Dimensional (AD) algorithm
for a resistive plasma and describe its numerical formulation for a particular
magnetic field topology. Then, we define back-averaging formally and discuss
regions of convergence and optimization. Finally, we demonstrate the advantages of
back-averaging by using it 1n the Alternating Dimension numerical code and
compare the calculated convergence rates with those of other methods.

1. THE SYSTEM OF EQUATIONS

We solve the system of equations:

A= I, 1), (1)

LR 2)
ot

vV.-U=0. (3)

in two dimensions (x, ) and time ¢ (see Fig. 1). This system describes the evolution
of a resistive plasma, which passes at each instant through an equilibrium state for
a large aspect ratio Tokamak in the range of low B (the ratio of plasma pressure to
magnetic pressure). Here n 1s a constant resistivity, ¥(x, y, t) is the magnetic flux,
J(¥, t) 1s transverse current density, and U(x, y, #) is plasma velocity [6].
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Following [5], we introduce the microcanonical area-weighted average on a flux
surface,

¢ ds
@>=$r (@)

where the line integral 1s taken along a y = constant contour, and V(y) is the area

enclosed by the contour.
We define the inductance K(V) [5,10] as

K(v)=<IVVI*>. (5)

Taking the flux average of Eq. (2) (recall that 5 is constant), we obtain

N
<E>+<U-W/>=n<dl//>- 6)

An elementary calculation shows that

{4y ) =(Ky'), (7)

where ' indicates the derivative of y(¥) with respect to V,  being the inverse
function associated with V(i) [5].
From Egs. (6), (7), and (3)

Y, =n(Ky'Y, (8)

where Y, = (8/01) Y(V, 1)
In sum, to lowest order the numerical code simulates the reduced plasma
equations

Al// =J('l/’ t),
Y, =n(Ky'), 9)
V.-U=0,

which is solved without reference to U. The velocity has a higher order and could
be found, if desired.

2. ALTERNATING DIMENSION NUMERICAL
FORMULATION OF THE MODEL

The alternating dimension (AD or 14D) numerical formulation was used first in
[57 and then in [6]. In the resistive case, considered here, the system of equations
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(9) is separated into two equations which are solved alternately. The two equations
are:

— the two-dimensional (2D) equilibrium equation,
Ay =J, 1), (10)

where J(i, ) is assumed to be a known function of ¥(x, y, 1).
— the one-dimensional (1D) evolution equation for the poloidal magnetic flux,

y(V, 1),
v (V. )=n(K(V, ) ' (V, 1)), (11)

with K(V, 1) given. After (10) is solved, K(V, 1) is computed for the solution of (11)
from the contours ¥ = constant.

The 1D and 2D equations are coupled by
JW, 1) =n(K(V, ' (V, 1)) (12)

The code alternates between an inner loop which solves (10) and uses the result
in an outer loop which solves (11).

Inner loop (an iterative algorithm for solving (10)). Initially an approximation
to the family of contours ¥, = constant and a profile J,(¥,, ;) as the right side in
(10) are given. The algorithm solves a nonlinear elliptic free boundary problem with
appropriate Dirichlet boundary conditions. Specifically, we are considering a
plasma domain separated by a free boundary from a vacuum domain bounded
externally by a perfect conductor. The condition on the free boundary is that the
cross-sectional area of the plasma is constant, V=V ...

Let y,(x, y) represent the flux function at the sth iteration and V,(x, y) the area
mside the contour ,(x, y)=constant. Without further comment, we treat V', as a
function of ¥, (and t) or, inversely ¢, as a function of V,. We iterate as follows
until a fixed point solution of (10) is found:

Voir=4"'(J,(W,. 1)) inD
Jo(We, 1) given,
= g(ty) given on dD,
|4 fixed.

plasma

Here D is a rectangular domain inside which the vacuum field and plasma is
contained. (See Fig. 1.)
The solution is characterized geometrically by tracing the contours { = constant
on a two-dimensional mesh and calculating V() on a one-dimensional mesh.
The (2D) equilibrium solution gives the following physical quantities at time #;:
Y(x, ¥, to), YV, to), J(x, y, to), J(V, t,), and K(V, ¢,). This completes the inner loop
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Fic 1 The domain, D, 1s the interior of the rectangle in the (x, y) plane The center of the rectangle
is at the origin Dinichlet boundary conditions on v, ¥ 4, are given on the perimeter of the rectangle, 8D
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Fic 2 A flow chart of the outer loop iteration Kity) and K(t,) are used to determuine K(t)
numerically as piecewsse linear function. Convergence 1s determined by comparing J,(t,), the profiles
resulting from the solution to the diffusion equation, to J,{1,), the profiles resutting from the mner loop
at time ¢,
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Outer loop. Using the equilibrium geometry at time ¢, obtained above, the 1D
flux transport equation (Eq. (11)) is solved on a (one-dimensional) diffusion mesh
for t,<1<t, with ¥ given on the plasma edge.

The time dependence of K(V,t) is numerically approximated by a piecewise
linear function 1n . This requires an outer loop Piecewise constant interpolation
does not.

The outer loop (see Fig.2), by alternating between the mnner loop equilibrium
solver and the 1D evolution solver, finds by iteration a self-consistent current
profile J(V, t,), t,>t,, which produces the quantities y(V, t), J(V, t), K(V, t) for
Lo<t<t,.

For surveys of AD (14D) transport codes including the numerical formulation of
many such codes and a detailed description of some problems which have been
solved using them, see [11, 12].

3. THE DOUBLET

A doublet is a special geometrical configuration of flux contours, i = constant,
with a separatrix, a contour shaped like a figure eight, which bounds two islands of
magnetic flux contours. (See Fig. 3.) It is used in [6] to study the evolution of the
topology of contours. An interesting problem for numerical solution, which has
important physical consequences, results from the formation and motion of the
separatrix. This creates a very sharp peak in the current density profile. (See Fig. 4.)

The doublet is created by shaping coils, ideahzed in our case by specifying  on
segments of the rectangular boundary (cf. (13)). We then simulated oscillating

Y=y, , constant Y=ty + A sin (wt) v=y,

v, v,

Fic 3 The doublet geometrical configuration A separatrix (dotted Ine) bounds two slands Lines
represent y = constant contours



BACK-AVERAGING 207

14.0 <
)
12.0
J
10.0 }
]
! )
g.0o
2 <
1
6.0 )
0.0 v 0.1 0.2

Fic 4 Current density profile A singulanty in the form of a surface current on the separatnx arises
in the doublet model of Grad et a/ [6] Our simulation indicates this by a sharp peak in the J-profile

currents in the shaping coils by superimposing a sinusoidally oscillating boundary
condition on ¢ in these segments and taking constant boundary values elsewhere
on the boundary. This is a 2D analog (low S, high aspect ratio) of the Doublet III
experiment at GA Technologies, Inc. {13] in the late *70s.

The doublet geometry 1s treated as a free boundary problem requiring the
assignment of values of the volume,' ¥V, and ¢ to the separatrix. For this we
proceed as follows: We introduce V., (1), the volume of the separatrix, giving 1t a
smooth piecewise cubic representation. Accordingly, the coordinates inside the
separatrix are n terms of V/V . (¢) and outside (V' — V., (¢))/(V, — Vep(2)), where
Veep(?) (the volume inside the separatrix) is piecewise cubic 1n ¢ and V, (the total
plasma volume) is constant. The volume V,(f) and its derivative V() are
approximated by continuous interpolation between ¢, and t,+dt. These inter-
polations are calculated by iteration in the outer loop. Because K is singular at the
separatrix and J is highly peaked [6], normalization 1s particularly important since
the singularity in normalized volume becomes stationary. The outer loop
calculation is extremely sensitive to the position and velocity of the singularity. The
iteration must therefore receive very special treatment; the details will be treated in
Section 9.

Back-averaging will have three uses: to solve the nonlinear elliptic free boundary
problem (inner loop), to determine the self-consistent J profiles (outer loop), and to
calculate the velocity of the separatrix

! Area = volume/unit height

58176 1-14
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4 BACK-AVERAGING AND FIXED POINT
ITERATION SCHEMES IN GENERAL

Back-averaging is a multi-stage acceleration technique for calculating a fixed
point X of a transformation F: ¥V — V of a finite dimensional vector space V.
Although the method applied to nonlinear problems, for the purpose of analysis
and optimization of the back-average schemes, we later assume that F is
approximately linear in the neighborhood of a fixed point.

We review the terminology and concepts for fixed point iteration schemes. A
fixed point of F satisfies

FX)=X. (14)
The iteration scheme
YN+I=F(‘YN) (15)
converges provided that the Lipschitz condition
IFPy—FOIN<CIP-QI, C<]1,
holds on a neighborhood of the fixed point which contains X,. If F1s differentiable,
mnstead of the Lipschitz condition, we shall use the bound on the derivative,
IF (X)) <L (16)
In general | X|| denotes an appropriate norm of X. Here we use the Euclidean norm
but others are applicable and numerically useful.

Since F is differentiable we can approximate F by a linear function in the
neighborhood of a fixed point ¥ by

F(X)~L-X+B, (17)

where L = F'(Y). In practice, we shall have only approximations to L and B from a

priori calculations. We employ the iteration scheme for Eq. (17):
Xvi=L-Xy+B,
N -il B N ( 18)
X,=8B.

This yields Xy=(1+L+L*+ --- + L") X,. The convergence of the iteration
scheme in Eq. (18} is equivalent to that of the series:
(1-L) '=14+L+L*+L%+ --. (19)
For the sequence {Xy} defined by Eq. (18), we define
Ay=I1Xy—Xy_1l, (20)

AN+1
N AN ( )
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If {x5} behaves like a geometric sequence, then 4, has a limit 4. This 4 will be the
absolute value of the largest eigenvalue of L. Convergence is guaranteed if |1| <1
but our problem does not always satisfy that condition. In fact, || less than but
close to 1 1s not useful. (Even 1in our “easy” case |A| =0.9979.) We need a method of
obtaining convergence when it does not exist or accelerating it when it does. That is
the topic of the next section.

S. BACK-AVERAGING

For the purpose of generating or accelerating convergence, Stevens ef al., used
the method of simple back-averaging (SBA) [5], also called two-point back-
averaging. Here, we furnish an analysis and optimization of SBA and extend the
method to a more powerful technique, three-point back-averaging. Simple back-
averaging is analogous to the method of successive overrelaxation (SOR) [14].

Consider a transformation from the sequence {X,} of (18) to a new sequence
{Yy} defined as

0=X07 (22)
Yo, =(1—a)F(Yy)+a¥,, xeR.

If {X,} is governed by the affine transformation T:X — LX + B, Eq. (18), then
{ Yy} will be defined by

YN+ 1= TYN’

- (23)
T=(1—-a)T+a
If {X,} becomes geometric, 1e., Xy, ; = AXy, 1 complex and constant for large N,
then

7N+|=/“_’Na

(24)
Ai=(1—o)i+a

Two-point back-averaging is so called because two successive stages Y, and
F(Yy) are used at each iteration step. The concept of SBA is simple: the nth iterate
Yy, is not F(Y,) alone, but a linear combination of Y, and F(Y,). In the
simplest form Y, , is a weighted average of Y, and F(Y,) with weights between
zero and one. More generally, the weights are less restricted; we require only that
they are real. This increase in generality is crucial.

Geometrically, we interpret the connection between 1 and A for a given o as
follows. Consider A =€ + in in the complex plane. Draw a line (L,) passing through
4 and (1, 0). Depending on the choice of «, 4 can lie anywhere on this line. If =0
then 1= 4, and the iteration does not involve back-averaging. If a=1 then =1
and the scheme is marginally convergent. Notice that o can be negative or > 1.
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Next, consider two successive applications of SBA using a different back-average
parameter at each application or stage. Using the linearized form of F, T, let

Tl"/‘_,:(al'*'(l‘“l)T)sya

TioX=(a+(1—a,)T):X. (2)
Combining T, and T, gives the three-point back-average (3PBA) formula,
T o X=TyoT o X=(aa+ (1 —a) T)ox, + (1 — ) T)o X. (26)
Using the definition of {X,}, Eq. (18), the 3PBA transformation is
(X}~ {¥,}
Y =X, (27)

)—’n+l=ala2 )_/n+ I:(l-"(xl)al_’_(l_aZ)al]T'C Yn+(1—al)(l _aZ) TZG Yn

A three-pont back-average iteration, T, , can be written as a 3-stage iteration
scheme:

YO=%
Fih =, PO 4 (1 - ) Te 7O
Y=o, Y0+ (1—a,)To ¥V

Y = V2
n-+-l_ Y

(28)

Thus 3PBA is a multi-stage iteration scheme [15].

We shall describe an optimal choice of «, and «,. Earlier 1n the literature of
plasma equilibria, Marder and Weitzner [16] gave a special 3-stage iterative
method which can be written as a 3PBA scheme but 1s not optimal. This is given by

Y,oi=(1=p%) Y, +28°F(Y,) - B*F(F(Y,)), (29)
In the linear case, this scheme can be factored as
Y, or=[(1=B)+BT)I[(1+B)—BT]- (30)
which amounts to (27) with
ap=(1-p),
oy =(1+p).

Unfortunately, in our application MWS tends to converge slowly. To overcome
this slow rate of convergence, at the expense (or benefit) of changing the region of
convergence and perhaps shrinking it, we apply 3PBA by treating «, and «, as
independent parameters.

(31)
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6. REGION OF CONVERGENCE

Recall that in two-point back-averaging A is the eigenvalue of T and 7 the
corresponding eigenvalue of T, see (24).
The image of |Z| <! in the complex A-plane, 1s the interior of the circle of
marginal convergence CM,, defined by
il

e

—_— 32
| (32)
with center at a/(2 — 1) on the real axis and passing through the point 1= 1.If T'is
iterated with this value of a, all eigenvalues A inside CM, yield convergence.

If Re{i}>1, {¥y},, the sequence obtained by back-averaging with «, can be
made to converge by taking a=1+¢ with sufficiently small positive ¢ Given
Re{A} <1, {¥,}, converges for x=1—¢ and sufficiently small positive ¢ (see
Fig. 5).

If the eigenvalues can be enclosed in a circle CM,, {¥,}, converges. Therefore,
when all eigenvalues have Re{1} <1, an « can always be found which yields con-

A=f£+1n
8.0} p
i a=1-€ a=1+¢ J
4.0F L
8 p
in
0.0
L 4
—A.Ob 4
L 4
-8.0} E

-8.0 -5.0 0.0 4.0 8.0

Fic 5. Circles of marginal convergences CM, If 4 1s an eigenvalue of T and hes mside CM, then
the calculation of the eigenfunction corresponding to the eigenvalue 1 converges Five curves CM, are
shown The largest two are the cases a=1—¢& and @ =1+¢ Next in size 1s a « =0 (no back averaging),
next 1s « =1/ In all cases, e=02 The dotted line 1s £ =1 which is tangent to CM, for all « at =0
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vergence. Likewise, when all eigenvalues have Re{1} > 1, an « can be found which
yields convergence. However, no simple back-average scheme converges if there are
two eigenvalues, A, and 4,, satisfying Re 1, >1 and Rel,<1. In addition, if
A=1+in for any n, no simple back-average scheme converges.

For a three-point back-averaging scheme, the region of convergence |1 =1 of
T,.., is calculated as

o

|21 = Loty + (1 = 05) A ety + (1 — ;) A (33)
Equivalently for p =|7|,

p’= {ayo + [y +ay) =200, 1 E+ [T+ oy — (ot +0¢z)](fz—'72)}2
+n*{(a, + o) =200+ 2[1 4 a0, — (o, + a,) ] €2 (34)

In the above, substitute
oy + Ay = 2 - 5,

(35)
o, =1—g¢,
A=f+1n
3.0 g -~ 2 2 T r v Y - A2 A4 2 2
2.0 1
1.0¢% p
in -
0 A~
B=.7
-1.0 } B=.u4s7
-2.0} 1
-3 . . —— . .

FiG 6 Curves of marginal convergence for the Marder-Weitzner iteration scheme are lemniscates
Ly The crossing point 1s £ =1 and the petals are asymptotic to £ =y and £ = —y As f 1s decreased Ly
becomes larger In the above the largest curve corresponds to f =045, the next smaller to §=0.5, then
f=071, B=087 and the smallest, = 1.00



which gives

Pr=[(1—e)+ 2=+ (6—e)&—n) P +n*[2e — 5+ 2(6—£)£]?

In (36), we set

BACK-AVERAGING

y_ 1 ) 17266\
fﬂg(é—ﬁ) [f"‘i(m)],

A A

0.0 2.0 4.0 6.0 8.0 100

£
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(36)

(37)

FIG. 7. Curves of margnal convergence, I';s These are disjoint ovals The center of symmetry &,
shifts to the night of £ =t and the size of the ovals increases as ¥ 1s decreased. Notice that all the ovals on
the left side of £ =1 pass through (1,0) In this figure, the curves I” 44 are shown for the following (3, f)
pairs. (05, 1.8), (0.71,18), (087, 18), (1,18), and (122, 1.8)
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We get
4+ +28—-2E—7)+(1-p)=0 (39)
and hence

fi=~C+ D+ [E+1P—(EZ-28-1-51" (40)

For any o, «, the contours p=constant belong to the family of curves in the
¢, n-plane consisting of ovals of Cassini, lemniscates, and “peanuts.” In particular,
the curve of marginal convergence, p=1, which bounds the set of eigenvalues for
which 3PBA converges, is a member of this family.

Let the curve of marginal convergence be denoted by I,,, or, equivalently, in
terms of ¢ and §, by I',;. Recall from Section 5 that MWS is 3PBA with o, +a,=2,
a;0,=1— 2 In terms of ¢ and J, cf. (31) and (35), MWS is equivalent to 3PBA
with §=0 and ¢= B2 In this case, the curve of marginal convergence I is a
lemniscate L. (See Fig. 6.)

3.0 ——25hsin, S —
2.0 } ;
[ 1
1.0 } 4
-?-1 4 p
Ny £ .
-1.0+ 1
( -
-2.0} 1
S M S S S Vi G S VR S S
-1.0 0.0 1.0
&

Fic 8 The degenerate case in which there are only two n =0 intercepts. I",4 are single ovals or
peanuts. f= —1 m all the above, =141 for the largest peanut, §=0.71 for the smallest oval. The
intermediate curves are =122, §=1.00, and 7 =087.
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We replace o, o, by the parameters
(41)

to depict the family 1n the different parts of the parameter range (see Figs. 7 and 8.)

7. CHOOSING AN OPTIMAL SIMPLE BACK-AVERAGE PARAMETER

We seek an « for which the iteration of T converges quickly. Let e be the
eigenfunction of T with eigenvalue A (Re(1) #1). Set p= |7] for 7 corresponding to
the specific eigenvalue, A= ¢ + in of T, and back-average parameter o. We have

p?> =122 =[(1 =) (& +1*) + 20(1 — ) + 2’ ]. (42)

The convergence to the eigenfunction will be optimal for the value «, of « which
yields the minimum value p? of p*

n’+&(E—1)
=1__=>> 7 43
o1 43
With this choice of a,,, for £ # 1, convergence is assured:
"2
pi=min|i]’= T 1. (44)

=17

If 4 1s real, then there exists an «, such that p, =0. This will sum the series in one
iteration and eliminate the eigenfunction belonging to A. In this case,

A
Y=o (45)

Note that the optimum back-average parameter a, depends on the value of the
eigenvalue A. If T has a dominant eigenvalue, then the convergence of the iteration
scheme may be satisfactory if the back-average «, is calculated using the dominant
eigenvalue. However, if the spectrum of T is broad, convergence can be improved
by taking an optimum o, of a relative to a set, S, of N eigenvalues,
S={A,=¢&+m,j=1,..,N}.?

Finding «,, is a nonlinear minimax optimization problem. Algorithms for
solving the general nonlinear minimax optimization problem are given by

Overton [17]. Here, we solve the optimization problem when S is a set of only
three eigenvalues.

2 The difficulty 1s that a lesser eigenvalue may emerge, after simple back-averaging, with an absolute
value even greater than that of the originally largest eigenvalue
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Consider the following minimax optimization problem for defining «

opt>
min {Fy()|a€ R}, (46)
where
Fyla)=max{pX(a), j=1,2, .., N}, (47)
and
pa) = |4, (x)]% (48)

here 7 («) is the eigenvalue of T from back-averaging with « which corresponds to
the eigenvalue A of T.
Notice that the p, are convex functions of a. F,, 1s also convex. Since F,, is

Fic 9. Curves p;(a) for 4,=¢,+m, The curves are convex with mimmum at a*(4,) given by
Eq (44) p,(a) 1s never zero for Im(4,) # 0, however, pl,(a"(i})) <1 for all A,. If only one 4, 1s considered
in determing the optimum then a*(4,) 1s the result If more than one 4, 1s considered, the minimax
optimization algorithm outlined n Section 7 determunes o* In this case the mtersection of p;, and p;,
gives o* In the above 2, =05+ 01, 4, = —06 + 02, A3 = —07 + 03, 4, = —08 + 04,
As=—09+05, 4,=1 +06:
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continuous and piecewise differentiable, each piece being a segment of some p,, the
global minimum of F,, will occur either at a minimum of p(«) for some j or at an
intersection of p (a) with p,(«) for some (j, k). (See Fig. 9.)

With N =3, an optimization algorithm need not be sophisticated. We shall use
the following optimization procedure:

1. We find the intersections, ,,,(4,, 4,) of p,(a) and p,(«), for all (4,, 4,) pairs
j, k=1,2,3 using Eq. (49), namely,

2(Re 4,—Re lk)]}
nt A’ » A’ = 1 1 —| . (49
Hmly> 44 /{ [ Pk ’
and form
INT = {a,(4,, 4,) <1, pairs(4,, 4,), j#k, j,k=1,2,3}. (50)

(Besides the intersection given by (49), there is a second intersection at a = 1, where
p(1)=1 for all eigenvalues.)

2. Let Ay, yield the maximum of the minima of the several p («); 4, satisfies

’12
-— = A . 51
|Amx — 1] Tea-?(ii]_”z) (51)

3. If the set INT of intersections is empty, then o, = a,(4,,) as defined by
Eq. (43).

4. IfINT # {4} then set TEST=INT U {a,(4), j=1,2,3}.

5. From TEST form the set TEST' by deleting any elements which yield
points below the graph of F,,; that is, delete all a* for which p (a*) < Fy(a*) and
all a, for which p (a,) < Fypla,), where a, =a,,(4,, 4,).

6. In conclusion, agpr is given by

plaopr)= min_ {F(a)}. (52)

xe TEST’

The cost of choosing a,, based on three eigenvalues is negligible. However, if a
significant number of eigenvalues are used, the cost would become prohibitive. The
cost of calculating N eigenvalues involves solving an N x N inverse problem and
N+ 1 iterations of F to find T after which the eigenvalue problem must be solved.
The additional information gained by using a large N is not cost effective because
the original transformation F is nonlinear and T is only an approximation, which,
at times is quite noisy. Therefore, the benefit of an extremely precise determination
of « will be counteracted by the noise in the system. In practice either three or four
eigenvalues are calculated. However, only the two most dominant eigenvalues are
used. We assume the third eigenvalue is zero to accommodate the many eigenvalues
near zero.
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8. OPTIMIZATION OF THREE-POINT BACK-AVERAGING

For 3PBA, there are two back-average parameters, o, and «,, available for
optimization. Denote the optimal pair of back-average parameters by (af, a¥).

In Section 7 for SBA, using one eigenvalue A to determine the optimum, we
obtain the optimal «, from Eq. (43). For 3PBA with only one eigenvalue, A, the
optimal pair becomes («,, «, ), where «, satisfies the same equation. This follows
immediately from the following: From Eq. (26),

1T, oll = lloty + (L=, ) T floty + (1 — 1) 7. (53)
Consequently, when we use only one eigenvalue 4,

min |2, ,,]l = mm o, + (1 — o) Al min o, + (1 —a,) A (54)
apx ay %

a, satisfying (43) minimizes each factor in (54); hence, the optimal pair is (0tys ).
If two eigenvalues, 4, and 4,, are used to determine the optimal pair (a;,, «,) and
each « is real, then the optimal pair is (a,(4,), «,(4,)), where

2 (56)

a*(ij) = m

This 1s a consequence of the following proposition:

Given a linear transformation 7 of a linear vector space V of dimension N.
Assume that T has exactly M distinct eigenvectors, ¢,, whose eigenvalues
are 4,, j=1,2,3,., M. If A, are real for all~j, then there exist o,
j=1,2,.., M such that the Euclidean norm, [T »,s .|, of the M +1

¢ omit the proof which 1s straightforward.

For real 4, and 4,, «f and af are readily determined. For complex eigenvalues
A= +in,j=12,if p,(a,, ay) #p,,(a,, a,) for any («,, a,) other than (I, 1), the
optimal (af, aF) will be the pair which minimizes the maximum of p, («,, «,) and
palay, 23). If p, (a;, @) =p,,(a,, a,) along a curve, Q, in the (a,, a,) plane the
optimum occurs at a point on  for which p, («,, @) is minimum or eisewhere at a
minimum of p, (a;, a,) or p,,(«;, a,). The extremum on 2 can be calculated by
minimizing the Lagrange multipher function, .#:

£ =184+ (1L =& B2, + (1 =P) +ullda+ (1—-&)| [A,8+ (1—P)]
— A&+ (=) 4B+ (1=B)]. (57)
where 6=1—a, and f=1—a,. In terms of £ the extremum problem becomes

min [ #], (58)

& Bop
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subject to
LG+ (1—a)| |28+ (=P — |4+ (1—a) |4, f+ (1 —P)=0.

Since Q2 is convex, we determine the mimimum on £ as the solution of

0F ¥ oY
&2z 59
oa  pf du (59)
Using 4,=1—4, and 1,=1—1,, yields the system
(1428 —Re 4,))(14,1* f—Re 1) _ |AB— 1" (60)
(1118 —Re 214, f—Red;) 1 4,B—1]*
}72_2}7[121|2—|22|2+5(|21|2Reil—|22|2Re22)]
1404 — 14,0
2015 1215 12 T 3
+[5(|/1,| |A2J 25£Re/11 ReAZ)]zo’ 61)
|4 1* =14,

where
F=af and §=a+p.

The minimum problem 1s reduced to the solution of the 4th-order system (60) and
(61) for 5 and & which is accomplished numerically. Now we wish to solve the
minimax problem corresponding to the one of Section7. For this general
optimization problem, a set, S, of N eigenvalues, 4,, determines the optimum pair,
(afF*, of*). Hence let (aff*, aX*) be the pair which solves the following problem:

min {Fy(a,, «,)] (o, 2,) e R?}, (62)
(x1 x2
where
FM(alaaZ)sza;( {p)l/(alsal)} (63)
and
Py, a)=I7. (64)

Here 7, 1s the eigenvalue of T,.., corresponding to the eigenvalue A, of T.

Notice that p=p,(a;, ®;), y=1,2,.. represent convex surfaces in three-space
(p, «y, ;). Moreover, F,, is composed of sections of p +(2y, o) surfaces for some
4,€ S and is convex. The global solution to the minimax problem lies at a minimum
of p, (e, ;) or at an intersection of pifloy, o7) with p, (o, a,) for some 4, 4,. For
simple back-averaging, « represented the only degree of freedom and the intersec-
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tions are points. Now there are two degrees of freedom «a,, a, and the intersections
are curves

The optimization concepts can be generalized to any finite number, K, of degrees
of freedom, a, a5, ..., 2.

For the current application we use three eigenvalues to determine the optimum.
The explicit procedure for determining the optimum pair (a¥**, aF*) follows:

1. Calculate the optimum pair, (af(4,, 4;), «¥(4,, 4;)), for each pair of
eigenvalues (4,, 4,), j#k=1, 2, 3, using the Lagrangian multiplier (58).
2. Form the set OP of optimum pairs,

OP:““?‘(/{,» lk)v a;(l/a Ak))9j#k=1,253} (65)

considering only two eigenvalues 4, and 4. (Note that this could be a minimum of
pi, Of p;,, Ora minimum within the intersection, 2.)

3. Form the set OQ where
0Q = {p*4,, &), I=1,2,3}, (66)
where

pF (2, A)=max {p, (a¥(4,, L), a3(4,, L)), m= j, k} (67)

and

1, for j=1,k=2,
I=12, for j=2,k=3, (68)
3, for j=1,k=3.

4. Calculate the intersection, (af,al) of p,,pu,ps if 1t exists. If
pi(af, a5) <1, form the union of («f, a3) with OP and the union of p(a{, a}) with
0Q.

5. Evaluate p, (a{¥(4,, Az), a¥(4,, A,)) for 4, # (4, or ;) for all (j, k) pairs in
Eq. (68) (i.e., for all values of /). If p, > p} for the /th entry in OQ then delete p}
from OQ and the /th entry, («{f(4,, 4,), 2¥(4,, ;)), of OP.

Now OP contains all possible optimal vertices and minima of F,, and OQ
contains the corresponding value of F,, at each entry of OP.

6. Determine (aF*, a¥*) as the pair in OP which corresponds to the entry in
OQ which is the minimum over all members of OQ (i.e., if the /th entry in OQ is
the minimum in OQ then (a}*, a¥*) is the /th entry of OP).

By taking N =3 we have made the brute force optimization procedure affordable
and, as we mentioned, increasing N does not necessarily yield any benefit.



BACK-AVERAGING 221

9. APPLICATION OF OPTIMAL BACK-AVERAGE ALGORITHM
TO THE OUTER Loor oF THE AD MoODEL

The two quantities back-averaged in the outer loop of the AD model are V., (t),
which establishes the location of the separatrix in volume space, and J, which is an
input for the equilibrium solver. One way of applying the optimal back-average
algorithm (OBA) to the outer loop simply uses the same optimal back-average
parameter a,,, for V., (t)" and J. This method works well for easy problems.

A somewhat more complicated method of back-averaging the outer loop is to use
OBA to calculate a back-average parameter, o, for V,(?)" and, then, to calculate
a different one, o, for back-averaging J. This use of two separate back-average
parameters is essential for convergence in the hard cases (small resistivity).

First, take the same « to back-average both V. (7)" and J. We begin by solving
for A~!, where A is the column matrix,

A—_—[A—,n_31\7_2—,,_1], (69)
where
vy
X,=| K» |; (70)
K

out

here V@(t) is V(1) at the nth iteration; KW =K(V"/2) and K" =

P sep! out —

K((Vima— VE)/2+ V{2)) at the nth iteration of the outer loop. We form
T=Ba"', (71)
where
B=[X"_2Y",IY,,]. (72)

Next, the eigenvalues of 7 are calculated. Then (24) is used to get 1. The eigen-
values A", i=2, 3 are the arguments of OBA. When SBA is used no additional
iterations are required to calculate the eigenvalues. However, when 3PBA is
applied, three additional iterations of SBA with a fixed « must precede the
calculation of the A{" at the nth iteration.

Two of the three eigenvalues of T, 1¢” and 1¢{", are used by OBA. The third
eigenvalue Z{" approximates 1. This is expected since for a fixed point of (23) to
exist there must be an eigenvalue of T near 1. The third eigenvalue used as input to
OBA is 1,=0. This in included to ensure that eigenvalues of T near zero which
would have converged with straight iteration remain convergent. This follows from
continuous dependence.
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In brief, the outer loop iteration with OBA is:

1. Back-average V,(¢) and J with a,,,, a starting back-average parameter,
for three iterations.

2. Calculate T, 7, 1=2, 3 and then Am =23

3. Input to OBA 4,=0, 1YY and A{"’ and specify SBA or 3PBA to get « or
(x,, o), respectively.

4 Do Case A or B:

Case A. SBA, use a for three iterations then go to step 2.

Case B. 3PBA, use (a,, a,) for the next 2k iterations, k=1, 2, 3. Iterate
with o fixed, a = a,q, for 3 1terations. Go to step 2.

To demonstrate the practical benefits of using OBA 1n this way in the outer loop,
we compare ratios of convergence for cases of increasing difficulty. For this
comparison we define the convergence factor, CF, of the iteration scheme over
iterations  through k as

CF =exp(In(e./e,)/(k — 1)), (73)

where ¢, represents ||J, —J, || at the kth iteration of the outer loop.

We now consider an “easy” case, one which converges, perhaps very slowly,
without back-averaging. The resistivity for the easy case is two orders of magnitude
larger than that for the “hard” cases. The J profile in the solution of the easy case is
not sharply peaked near the separatrix. Moreover, the modulation of the shaping
coils is decreased by two orders of magnitude from the hard cases. The excursion
and velocity of the separatrix are small enough so that straight iteration of the
outer loop converges.

Convergence factors for the easy problem resulting from using various back-
average schemes are shown in Table I. The overall convergence 1s calculated with
1=1 and k equal to the total number of iterations required to meet the convergence
criteria. The tail convergence, CF,,, is calculated with 1=k — 3.

The overall convergence factors in Table I clearly show that back-averaging 1s
necessary for practical convergence since the convergence factor of the iteration
without back-averaging (0.9979) is so close to 1 that 5800 iterations are required
for convergence to a final error of 1 x 10~° from a typical initial error of 2x 10~ L
The Marder—-Weitzner iteration scheme is significantly better than no back-
averaging. However, for this problem 1t, too, is slow since 750 iterations are
necessary to meet the convergence criterion with a CF of 0.984.

Simple back-averaging with any constant back-average parameter, « in the range
from 0.05 to 0.5 will result in reasonable convergence. Better, the optimum constant
back-average parameter of 0.25 yields fast convergence: 1t requires only thirteen
iterations. The cost of optimizing « for a time step is iteration of that step to
convergence with two or three different back-average parameters. This optimum
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TABLE [
CF for an Easy Case

Case Iteration Method CF gverall CF..
1 Straight iteration x =0 0998 0998
2 Marder-Weitzner iteration 0984 0985
3 OBA simple back-average, SBA 0330 0200
4 OBA three-point back-average, 3PBA 0324 0206
5 Constant simple back-average « =005 0760 0783
6 Constant simple back-average a =015 0412 0315
7 Constant simple back-average « =025 0363 0321
8 Constant simple back-average a =05 0575 0487

Note We show CF ., the convergence factor for the entire outer loop from first estimate to
convergence and the convergence factor CF,,,, for the last three iterations before convergence All CF
are for the same time step of an easy case The shaping coil modulation was 00002, the resistivity, 2

changes from one time step to another for the same resistivity and modulation and
changes even more for runs with different resistivity and modulation.

The benefit of both the OBA with simple back-average and the OBA with three-
point back average schemes is clear. Their CF’s are at least 12% smaller than any
others yielding convergence 1n at most eleven iterations. Most of all, the automatic
routines do nor need two or more preliminary calculations of a single time step to
find the optimum constant back-average parameter, after which an additional
calculation would have to be done to take advantage of the optimum constant
back-average parameter. Instead, both OBA routines use information obtained
from previous iterates of the same time step to adjust a for the following iteration of
that time step. Thus, each time step is solved only once, not two or more times.
Accordingly, in this comparison both OBA routines are more than two times faster.

The above comparison is strikin but] in gractice, somewhat unrealistic because

‘third time. Une would solve the timé step only once with an average value of .
When this average case comparison is made, the automatic back-average routines
yield a CF approximately 50% smaller than the average CF of all the constant
back-average parameter cases. Comparing the average number of iterations to
convergence, we note that with constant «, nineteen iterations are required, while
only eleven are required for the automatic routines. Accordingly, on the average,
OBA is almost twice as fast as using a constant back-average routine. For both
OBA routines, CF,, 1s markedly smaller than CF_,.,,. This is expected because
the outer loop transformation is better approximated by a linear transformation
near the fixed point. Once 1n a neigborhood of a solution we can obtain high
accuracy at minimal cost.

Now let us back-average the outer loop using OBA for V., and J, independently.

S

Let a,, be the back-average parameter for SBA applied to V{Z)(¢)". To determine

sep

S81 76:1-15
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%, We use (43) with A" given in terms of 2 by (24) with « fixed in the nth and
(n— 1)th iteration. In this,

4
A= 1 (74)

n—1

where 4, = V{Z)(t) — ViZ7 V(¢). The method 1s equivalent to using only one eigen-
value as input to OBA and specifying SBA as the back-average method. When o 1s
not constant for the two successive iteration steps, al) #a{ "), Eq.(74) is not

applicable. In that event, let V)= V23 ~/(¢)" and a, = 7" > /). Use (23) to iterate
twice by

TV, = Vo) =2V = Vo)=(V, ., — Vo), J=1,2,

and eliminate Vj to find

(L) Vs —as Vo] — (1 —a)[Vo—ap Vi ]

l(n>=
(I —os)(I—ay) (V53— V1)

(75)

Next, OBA is used on J. We calculate either o, or the pair («,, a,}, depending on
whether SBA or 3PBA is to applied to the J profile of the outer loop. The eigen-
values used by OBA to calculate a, or (a,, a,), are calculated from (69), (71), and
(72), where

(n)
sep

X,=| K" (76)
K(n)

out

and ) is ¢ at the separatrix at the nth iteration.

The choice of variables in X, depends on the problem being solved. In our
solutions of the AD cases, the above variables work well but other combinations of
¥, K, and V also work. As a guideline to choosing X we ask that one or two
variables should account for convergence over a major part of the domain and the
third should control the convergence for any localized exceptional feature. Here, in
(76), K is associated with convergence of quantities which are nor near the
separatrix and V.., near the separatrix. Certainly, some experience and intuition
about the problem are required to achieve convergence of a system with over 8000
variables with a representative subsystem of only 3. Note that we cannot use a
Newton method for our problem, since we know of no way of defining a derivative
for the outer loop. A secant method is also impractical because it requires solving
for the Jacobian of a system with 8000 variables, more work than solving the entire
problem.

The motivation for choosing the «, and a,., independently is twofold. First, the
geometry is extremely sensitive to V., (¢) in typical hard cases. If special care 1s not
taken to control V,(7)’, the geometry and profiles will quickly diverge from the



BACK-AVERAGING 225

equilibrium solution of the previous time step and the outer loop will never
converge. Second, after about five iterations of the geometry and profiles, the shape
begins to converge much faster than the profiles. Since V{Z)(z)" is more closely
related to the shape than the J profile, it too will converge faster than the profiles.
This difference in the rate of convergence can be converted from a hindrance to an
advantage if V{I)(r)' is back-averaged separately from J. Once the shape and
Vep(t) have converged to a moderate degree of accuracy, further minor variations
in them need not be considered in the choice of «,. Instead, «, can be determined
by the flux profile which dominates the end of the iteration.

The AD formulation of the model makes 1t simple to treat V{Z)(¢)' and J
separately. This 1s one of the major advantages of introducing volume space
normalized to V{;)(¢) in the diffusion equation to locate the separatrix. (Recall that
V)(¢) is interpolated as a continuous cubic function with continuous derivative
V(1))

The above method complicates the outer loop somewhat because we can change
only one back-average parameter at a time. Either a, must be held fixed while a,
is calculated or vice versa; otherwise it 1s not clear to which change the eigenvalues

are reacting. Accordingly, the outer loop 1s:

1. Set ViZ(t)' = V,(t—dt) and iterate the outer loop using o, =, to
back-average J for a few iterations, say, k, <8.

2. Iterate the outer loop with «,=a,,,, @, unchanged for k,=3,4,5 or
until the error, er, 1n the outer loop, is less than e, ,,,.

3. Calculate A2} then o, from OBA and back-average for k,=2,3,4 or 5

sep
iterations. Repeat this step until er < e,

4  Fix o, to its last value or to a,,, (By this time V() has converged to
the point where a, is no longer critical.)

5. [If er <erc then exist (erc is our fixed error tolerance).
6. Calculate A} then o or (2, ,), from OBA.
7. Do Case A or Case B

Case A. SBA, use a, for 3 iterations. Go to step 3.

Case B. 3PBA, use (a,, a,), for 2k; iteration, k; =1, 2, 3. Bach-average the
outer loop with o, = a e, o, unchanged. Go to step S.

The choice of o, s Xagiarts €1stars €astart> K1s k2, and k5 depends on the case
being solved. Typically the closer, «, . and o, are to 1, the safer they are for
difficult cases and the slower the convergence, even for less difficult cases. We find
that a,,,,=0.5 works well for most cases. a,,,=0.9 works for all cases but
Oygare = 0.7 works better for less difficult cases; however, o, <0.9 does not
converge at all for difficult cases (see Table I1I). The choice of e, ,,, is not critical;
we favor e g, =5x 102 Good values for e,,, are approximately 1 x10~3 If
€24an 1S too big, the eigenvalues input to OBA have little meaning since the outer
loop transformation 1s poorly approximated by the linear transformation 7 and the
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linear assumption upon which OBA 1s based is not applicable. Experience shows
K, =5, K;,=4, and K;=1 or 2 work well in all cases. a . = 0.6 or 0.7 work well,
in all but the difficult cases, where « . =0.8 is advised.

In addition to the above parameters, we specify three other parameters, «,,,,
Xmax» a0d ... We admit only back-average parameters greater than o, ; typically
O ~ —0.5. The reason o, is specified is that only three eigenvalues are input into
OBA but, in fact, T has many more. Back-averaging with a <0 is beneficial for
0 < |A] <1 but can cause eigenvalues with larger absolute value to diverge. a,,,, 1s
the maximum « permitted; usually o, lies between 1.2 and L.5. r .. is used to
determine whether the maximum p(4!"'), 1=0, 2, 3, for the a, output from OBA is
acceptable. If p(1)>r,.., then a, is used instead of «,.

A comparison of convergence factors for a typical adiabatic limit case 1s
presented in Table II. A comparison of Methods 1 and 6 shows that the use of OBA
to obtain a, and («,, ,), cuts the total number of iterations to convergence by

TABLE II

Convergence Factor Compansson for a Typical Adiabatic Limit Case

Back-average Total [teration up
Method method CF CF . iterations to step 4
1 Uep=05 0874 0888 96 —
o, =009 fixed
2 Oep =05 0812 0791 61 —
a,; =08 fixed
3 Usep =05 0820 0824 65 —
o, =07 fixed
4 Oep=035 0998 0998 6443 —
o, =MWS

(Not calculated
to convergence )

5 2. OBA 0838 07789 (0 785)° 56 30
x, OBA SBA
Agtan = 09

6 oep OBA 0762 0415 (0666)* 45 30
(2,, a; OBA, 3PBA
Agrar = 0.9

7 o, OBA 0.701 0.478 (0 640)° 35 21
(a3, ,);, OBA, 3PBA
Ogan =07

20779 (0 785) indicates CF,,; =0 779 and CFops =0 785, where CF o, 1s calculated with ¢ equal the
number of 1teration to €;3,n-

Note Contamns the convergence factors for the entire outer loop, CF as well as CF,,, for a typical
near-adiabatic case The total number of iterations and the number of iterations of step 2 of the outer
loop using OBA are enclosed where appropriate The same time step 1s done for all cases with = 0025
and the shaping coil modulation equal to 002 (Iteration counts are calculated assuming an 1nitial error
of 2 x 10~! and a final error of 1 x 10~° for the OBA cases e,,,,,, = 5. x 10~%).



BACK-AVERAGING 227

more than one-half. Similarly the number of iterations for Method 7 using OBA is
only slightly more than one-half of the number of iterations of Method 3 which uses
a fixed a,,, and a, equal to the o, and o, .., respectively, of Method 7. Further-
more, the slowest case with 3PBA and OBA, Method 6, converged in two-thirds the
number of iterations required for Method 2, the fastest routine without OBA.

This method of calculating ., and a, or («,, a,), separately was used in the
“easy case” which was discussed earlier. The resulting convergence factor for OBA
with 3PBA was 0.321. The equivalent procedure using OBA with the same « for o,
and o, resulted 1n an almost identical CF, 0.324. (See Method 4 of Table I.) For the
method using OBA with SBA to calculate o, and a, separately, CF =0.377; the
equivalent procedure using the same x., and x, is only slightly smaller with
CF =0.330. (See Method 3 of Table I.)

Notice that a smaller a,,,, can reduce the startup number of iterations as shown
by Method 7, «,.,, =0.7. However, more difficult cases occur at different time steps
of the same run, and for these, a,.,.<0.9 never converges (See Table III).
Accordingly, to be safe when using the same «,,,,, for an entire run, typically three
cycles of the forcing oscillations, a larger o, is required while a smaller «,,,, can
be used to accelerate the convergence of some time steps. In practice, we use
%,sare = 0.7 When 1t is possible to watch the convergence periodically and change
Usqan if necessary. We use o,,,,=0.9 for the overnight runs which are done
completely hands off.

Although the convergence in the preliminary iteration is somewhat slow, the use
of OBA after er <e,,,,, enables rapid convergence to within a small tolerance. The
tolerance 1n this case is 1 x 10 . Notice that if the tolerance is reduced by 2 orders
of magnitude to 1. x 10~% only eleven more 1terations are required for convergence
based on CEgps =0.67 for Method 6, in contrast to the 36 iterations required if
OBA is not used as in Method 1. This saves two-thirds the cost of the additional
accuracy.

This case and similar ones were tried with only one back-average parameter or
pair for both V{z)(r) and J™ but divergence and convergence were so slow and
erratic that they were unpredictable. This is due to the difference in the rate of
convergence of the shape from the rate of convergence of the profiles. To fine tune

Vin(e) first, then J, works well and enables us to use the AD code for cases with
singular profiles and rapidly changing shapes, problems which hitherto were
1 [aY sg —_—
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the outer loop with optimum fixed back- average parameters. We present the case
n =0.025 and fix the coil modulation, F,,,4 =0.02. At this time step, V., (7)" is near
its maximum. The optimum fixed back-average parameters for this time step are

%eep =0.5 and a,;=0.9. To go from an imtial error of 2x 10~ to a final error of
1 x 107 required 152 1terations of the outer loop with optimum fixed back-average
parameters. Savings of 50% result from using OBA to calculate «, and to
calculate etther o, for SBA or the pair («,. «,), for 3PBA 1n the outer loop of the
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TABLE IIf

Convergence Factor Comparison for a Difficult Adiabatic Limit Case

Back-average Total Iteration up
Method  method CF CF . iteration to step 4
1 wp=035 0923 0960 152 —
o, =009 fixed
2 Uep =05 1010 — — —
x,=0875 fixed
3 Oep =035 1011 — — —
o, =08 fixed
4 Ueep =05 1012 — — —
x, =07 fixed
5 Uep =035 0998 0998 6100 —
o, =MWS
(Not calculated to
convergence )
6 aeep OBA, SBA 0852 0816 (0818)“ 76 45
(2,,a;), OBA, 3PBA
% ysan =09
7 asep OBA, SBA 0850 0822 (0813)” 75 45
2, OBA, 3PBA
Xyyary =09

#0816 (0818) indicates CF,, =0816, CFggs =0818

Nore Contains the convergence factors, CF, and the total number of 1terations for the entire outer
loop from 1mtial error of 2 = 10~! to convergence of 1 x 106 for a difficult case The tail convergence
factor, CF,, as well as CF g, (see Table Il for notation) are presented The same time step 1s done for
all cases The shaping cotl modulation was 002 The resisistivity was 0025. The time step 1s chosen for
Vplt) near its maximum

same time step. Notice that convergence for MWS is so slow that it 1s not usable.
With the same parameter set (o> s> €1starts €2start> Fmaxs Cmins max) fOT both
low resistivity and the extreme case of low resistivity combined with high
modulation, using OBA results in a savings of at least 50% over the fixed o cases.
Therefore, it is cost effective to run our AD code completely hands off. Even when
compared to a hands-on method which uses the optimum fixed a.., and a, for each
time step (see Method 2 of Table IT and Method 1 of Table III) the hands-off
method using OBA shows a savings of over 40%. (see Method 6 1n both Tables II
and IIL.) Almost twice as many runs can be made using OBA to calculate a,., and
(), @), than with optimum fixed o, and «;. In addition, the outer loop using
OBA can be done hands off.

SUMMARY

We have analyzed two- and three-point back-averaging as multi-stage iterative
techniques for finding a fixed point of a nonhnear function F. For the complex
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eigenvalues of the linear approximation to F, we calculated the domain of
convergence in the complex A-plane as a function of the back-average parameter in
the neighborhood of the fixed point. For two-point back-averaging convergence is
always possible provided only that all eigenvalues fall to one side of the line
Re A= 1. The Marder—Weitzner scheme (the first we know to converge with eigen-
values on both sides of one) is now seen to be a special case of the more general
method, three-point back-averaging (3PBA) An analytic formulation gives the
domain of convergence of the method as a function of the back-average parameter;
the domain boundaries are members of a one-parameter family of curves containing
lemniscates and ovals of Cassini.

We have found an optimal back-average algorithm (OBA) which monitors the
dominant eigenvalues of F (assuming F 1s approximately linear) during successive
iterations. Qur techniques are capable of solving a wide variety of problems of
current interest in fusion plasma dynamics. In particular, we have employed the
alternating dimension algorithm to solve resistive MHD equations of motion
representing the time evolution of complicated magnetic field flux surfaces. The
back-averaging technique provides a fast and accurate solution. The central
difficulties appear in the so-called outer loop of the algorithm, which calculates the
strongly peaked current density profiles and determines the position and velocity of
a singular flux surface or separatrix We considered the outer loop iteration a three-
dimensional transformation, F, to approximate the eigenvalues of its linearization
and solved the evolution problem affected by these eigenvalues, using optimized
back-average parameters.

Convergence tests show that for practical convergence of the AD outer loop 1n a
doublet topology back-averaging is essential. Moreover, the tests of OBA show a
double rate of convergence obtained with a fixed optimal back-average parameter.
This saving is further enhanced since each time step 1s soived only once using OBA
whereas finding the fixed optimal back-average parameter requires solving one time
step at least twice and perhaps three times. Most important, once we arrive in the
neighborhood of a solution, OBA yields accurate convergence with a mimimum of
additional work.
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